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Adversarial Examples: Opportunities and Challenges
Jiliang Zhang, Member, IEEE, Xiaoxiong Jiang

Abstract—With the advent of the era of artificial intelligence
(AI), deep neural networks (DNNs) have shown huge superiority
over human in image recognition, speech processing, autonomous
vehicles and medical diagnosis. However, recent studies indicate
that DNNs are vulnerable to adversarial examples (AEs) which
are designed by attackers to fool deep learning models. Different
from real examples, AEs can hardly be distinguished from human
eyes, but mislead the model to predict incorrect outputs and
therefore threaten security critical deep-learning applications. In
recent years, the generation and defense of AEs have become a
research hotspot in the field of AI security. This article reviews the
latest research progress of AEs. First, we introduce the concept,
cause, characteristic and evaluation metrics of AEs, then give
a survey on the state-of-the-art AE generation methods with
the discussion of advantages and disadvantages. After that we
review the existing defenses and discuss their limitations. Finally,
the future research opportunities and challenges of AEs are
prospected.

Index Terms—Artificial intelligence (AI), Deep neural networks
(DNNs), Adversarial examples (AEs).

I. INTRODUCTION

In the era of AI, DNNs have shown great advantages in
autonomous vehicles, robotics, network security, image/speech
recognition and natural language processing (NLP). For exam-
ple, in 2017, an intelligent robot with the superior face recog-
nition ability, named XiaoDu developed by Baidu, defeated a
representative from the team of humans strongest brain with
the score of 3:2 [1]. On October 19th, 2017, the DeepMind
team of Google released the AlphaGo Zero, which shocked the
world. Compared with the previous AlphaGo, AlphaGo Zero
relies on reinforcement learning without any priori knowledge
to grow chess skills and finally beats every human competitor
[2].

For AI research, the United States received huge support
from the government, such as the Federal Research Fund. In
October 2016, the United States issued the project of Prepar-
ing for the Future of Artificial Intelligence and the National
Artificial Intelligence Research and Development Strategic
Plan, which raised AI to the national strategic level and
formulated ambitious blueprints [3], [4]. In 2017, China issued
the New Generation Artificial Intelligence Development Plan,
which mentioned that the scale of the AI core industries would
exceed 150 billion CNY by 2020, promoting the development
of related industries to enlarge their scale more than 1 trillion
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CNY. In the same year, AI was written into the nineteenth
National Congress report, which pushed the development of
AI industries to a new height and filled the gap in the top-level
strategy of AI development [5].

In the early stage of AI, people pay more attention to the
basic theory and application research. With the rapid develop-
ment of AI, security issues have attracted great attention. For
example, at the Shenzhen Hi-tech Fair on November 16, 2016,
a robot named Chubby suddenly broke down, hitting the booth
glass and hurting pedestrians without any instruction, which
is the first robotic injury incident in the world [6]. Soon after,
a crime-killing robot, Knightscope, manufactured by Silicon
Valley Robotics, knocked down and injured a 16-month-old
boy at the Silicon Valley shopping center [7]. At 22 o’clock,
March 22, 2018, an Uber autonomous test vehicle hit the 49-
year-old woman named Elaine Herzberg who was died after
being sent to the hospital for invalid treatment in the suburbs
of Tempe, Arizona. This is the first accidental autonomous
vehicles accident in the world [8].

In AI security, adversarial example (AE) has become a new
attack to AI systems. In 2014, Szegedy et al. [9] proposed the
concept of adversarial example for the first time, which means
that a subtle perturbation is added to the input of the neural
network to produce a wrong output with high confidence.
Even though different models have different architectures and
training data, the same set of AEs can be used to attack all
related models. AEs show a strong attack power in the field
of image classification, speech recognition, malware detection
and image captioning. For example, the classifier may mis-
classify the image as a speed limit sign of 45km/h after the
image of a stop traffic sign is processed with AEs, which
could lead to a serious traffic accident [10], [11]. Since speech
recognition is widely used in mobile devices and embedded
devices, many services and data are transcribed through speech
recognition systems. This trend allows attackers to use AEs
to control the device without the user’s awareness, resulting
in unpredictable risks. For example, playing hidden voice
commands may cause smartphones to access malicious web
pages and download malwares [12], [13], [14]. In malware
classification, AEs limit their potential application settings.
Attackers can slightly modify certain attributes of malware and
retain their malicious attributes, but they are still classified as
benign by the malware detection system [15], [16]. In image
captioning system, an image is used as input to generate some
captions describing the image which is perturbed by attackers
to generate some image-independent, completely opposite or
even malicious captions [17].

In recent years, many AE construction methods and defense
techniques have been proposed. This survey elaborates on the
related research and development status of AEs. The overall
framework is shown in Fig. 1.
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Fig. 1. The overall framework towards adversarial examples for this review.

II. PRELIMINARIES

A. Neural Network

Artificial neural network (ANN) refers to a mathematical
model that is similar to the brain synapse connection archi-
tecture and simulates the human brain’s nervous system to
process complex information. ANN is a kind of operational
model consisting of many neurons connected to each other.
Each neuron represents a specific output function called the
activation function. The connection between two nodes rep-
resents the weighted value of the signal called the weight.
The neural network connects many single neurons together by
weights to simulate the human brain to process information.

A simple neural network consisting of an input layer L1, a
hidden layer L2 and an output layer L3 is shown in Fig. 2,
where the circle represents the neuron of the neural network;
the circle labeled “+1” represents the bias unit; the circles
labeled “x1”, “x2”, “x3” are the inputs. Neurons in different
layers are connected by weights w. We use a(l)i to represent
the activation value (output value) of the i-th unit in l-th layer,
when l = 1, a(1)i =xi. With the given inputs and weights, the
neural network can calculate the function output h(w,b)(x). The
specific steps are as follows:

a
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(1)
11 x1 + w
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(1)
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The above calculation process is called forward propagation
(FP), which is a transfer process of input information through
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Fig. 2. A three-layer neural network model with the known inputs and
weights.

the hidden layer to the output layer. The activation function
ReLU: f(x) = max{0, x} is used to make the neural network
nonlinear between different hidden layers. When the machine
learning task is a binary classification, the final output layer
uses the activation function sigmoid: f(x) = 1/(1 + e(−x));
when the machine learning task is a multi-class problem, the
final output layer uses the activation function softmax: f(x) =

exk∑k=N
k=1 exk

. In the training process, the weights w and the bias
b connecting the neurons in different layers are determined by
back propagation (BP).

Neural networks belong to a cross-disciplinary research
field combining computer, probability, statistics, and brain
science. It focuses on how to enable computers to simulate and
implement human learning behaviors, thus achieves automatic
knowledge acquisition better. However, recent studies show
that neural networks are particularly vulnerable to AEs which
are generated by adding small perturbations to the inputs. In
what follows, we will discuss the AEs in detail.

III. ADVERSARIAL EXAMPLE

In 2014, Szegedy et al. [9] first proposed the concept of
adversarial example, which adds a slight perturbation to the
input, resulting in the adversarial image being misclassified
by the model with a high confidence, while the human eyes
cannot recognize the difference. Suppose there is a machine
learning model M and an original example C which can
be correctly classified by the model, i.e., M(C) = ytrue.
However, it is possible to construct an adversarial example C

′

which is perceptually indistinguishable from C but is classified
incorrectly, i.e., M(C

′
) 6= ytrue.

As shown in Fig. 3, the model considers the original image
to be a “panda” (57.7%). After adding a slight perturbation
to the original image, the original image is classified as a
“gibbons” by the same model with 99.3% confidence, while
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Fig. 3. Generating an adversarial example with the fast gradient sign method,
.007 corresponds to a small value ε that restricts the norm of the perturbation,
sign(∇xJ(θ,X, ytrue)) represents an imperceptibly perturbation [18].

the human eyes completely cannot distinguish the differences
between the original image and the adversarial image [18].

In order to facilitate the reader to intuitively understand
AEs, we use the neural network model in Fig. 2 as an example
to show the change of the outputs by perturbing the inputs. As
shown in Fig. 4, W (1) and W (2) are the weight matrices. After
adding a small perturbation sign (0.5) to the original inputs,
the adversarial inputs x

′

1, x
′

2, x
′

3 are equal to 1.5. Then, after
going through the first layer’s weight matrix W (1) and the
activation function ReLU transform operation, the 1-st layer
output a

′(2)
1 a

′(2)
2 a

′(2)
3 are equal to 1.5. Finally, after passing the

second layer’s weight matrix W (2) and the activation function
Sigmoid transform operation, the probability of the output
is changed from 0.2689 to 0.8176, which makes the model
misclassify with a high confidence. With the increasing of the
model depth, the probability of the output class changes more
obvious.

A. Cause of Adversarial Examples
AE is a serious vulnerability in deep learning systems

and cannot be ignored in security-critical AI applications.
However, in the current research, there are no well-recognized
explanations why the AEs can be constructed. Analyzing the
causes of AEs can effectively help researchers to fix the vul-
nerability effectively. Some researchers [19] suspected that the
reason is over-fitting or insufficient regularization of the model
led to insufficient generalization ability that learning models
predict unknown data. However, by adding perturbations to
a regularized model, Goodfellow et al. [18] found that the
effectiveness against AEs did not be improved significantly.
Other researchers [20] suspected that AEs are arose from
extreme nonlinearity of deep neural networks. However, by
adding small perturbations to the inputs of a linear model,
Goodfellow et al. found that if the inputs of a linear model had
enough dimensions (in general, the dimensions of the inputs
are high, because the inputs with too low dimension will result
in low accuracy of the model), AEs can also be constructed
successfully with high confidence.

Goodfellow et al. [18] believe that the reason for generating
AEs is the linear behavior in high dimensional space. In
the high dimensional linear classifier, each individual input
feature is normalized. For one dimension of each input, small
perturbations will not change the overall prediction of the
classifier, but small perturbations to all dimensions of the
inputs will lead to an effectively change of the output.

As shown in Fig. 5, in a particular direction, by adding
or subtracting 0.5 to each dimension of the original example
x, the score of class ‘1’ is improved from 5% to 88%. It
demonstrates that linear models are vulnerable to AEs and
also refutes the hypothesis that the existence of AEs is due to
the high nonlinearization of model. Therefore, the existence of
the high-dimensional linear space should be the primary cause
of AEs.

B. Characteristics of Adversarial Examples

In general, AEs have three characteristics:
Transferability. AEs are not limited to attack a specific

neural network. It is unnecessary to obtain architecture and
parameters of the model when constructing AEs, as long as
the model is trained to perform the same task. AEs generated
from one model M1 can fool a different model M2 with
a similar probability. Therefore, an attacker can use AEs to
attack the models that perform the same task, which means that
an attacker can construct AEs in the known machine learning
model and then attack related unknown models.

Regularization effect. Adversarial training [18] can reveal
the defects of models and improve the robustness of examples.
However, compared to other regularization methods, the cost
of constructing AEs is expensive. Unless researchers can find
shortcuts for constructing AEs in the future, they are more
likely to use dropout [21] and weight decay (L2 regulariza-
tion).

Adversarial instability. In the physical world, it is easy to
lose its adversarial for AEs after physical transformations such
as translation, rotation, and lighting. In this case, AEs will be
correctly classified by the model. This instability characteristic
challenges attackers to construct robust AEs while creating
difficulties in the deployment of AEs in the real world.

C. Evaluation Metrics

1) Success Rate: When constructing any form of AEs,
the success rate is the most direct and effective evaluation
criterion. Within a certain range, the success rate to generate
AEs is inversely proportional to the magnitude of perturbation.
For example, the fast gradient sign method [18] requires the a
large perturbation and is prone to label leaking, which means
that the model classifies an AE correctly when that AE is
generated using the true label but misclassifies a corresponding
AE generated without using the true label. Therefore, the
success rate is much lower than the iterative method [22] with
the lower perturbation and the Jacobian-based saliency map
attack method [23] with the specific perturbation. Usually, it
is difficult to construct AEs with 100% success rate.

2) Robustness: The robustness of machine learning models
is related to the classification accuracy [24], [25]. Models
with better performance are less vulnerable to AEs, i.e.,
models with higher accuracies only require less perturbations
to construct AEs. Robustness is a metric to evaluate the
resilience of DNNs to AEs [26]. In general, a robust DNN
model has two features:
• The model has high accuracy both inside and outside of

the dataset;
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Fig. 4. The perturbation to the original inputs for a three-layer neural network (Fig. 2). The value of the original inputs x1, x2, x3 and the weights W (1),W (2)

are initialized randomly.
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X

X*
∆adv(X,F)

X*

X*

X*

X*

X*

X*

X

X

Fig. 6. Visualizing the metric of robustness: This 2D representation
illustrates the metric as the radius of the disc at the original example X and
going through the closest adversarial example X* constructed from X [26].

• The classifier of a smoothing model can classify inputs
consistently near a given example.

The robustness of a DNN model F is defined as:

ρadv(F ) = Eµ[∆adv(X,F )] (5)

As shown in Fig. 6, in the circle with a radius of
∆adv(X,F ), the class output of the classifier is a constant
original example X, and the output becomes an adversarial
example X∗ outside the circle. Therefore, the magnitude of
the perturbation ∆adv(X,F ) is proportional to the robustness
of the model, i.e., the higher the minimum perturbation value
needed to misclassify the example, the stronger the robustness
of the DNN is.

3) Transferability: AEs generated for one machine learning
model can be used to misclassify another model, even if both
models have different architectures and training data. This
property is called as the transferability. The AEs can trans-
ferred among different models because a contiguous subspace

with a large dimension in the adversarial space is shared
among different models [27]. Transferability makes attackers
only need to train the alternative model to construct AEs, and
then deploys these AEs to the target model to be attacked.

The transferability of AEs can be measured by the transfer
rate, i.e., the ratio of the number of transferred AEs to the
total number of AEs constructed by the original model. In
the non-targeted attack, the percentage of the number of AEs
generated by one model are correctly classified by another
model is used to measure the non-targeted transferability, we
refer to this percentage as accuracy rate. A lower accuracy
means better non-targeted transfer rate. In the targeted attack,
the AEs generated for one model that are classified as the
target label by the other model as the percentage of the targeted
label to measure the targeted transferability, we refer to this
percentage as matching rate. A higher matching rate means
better targeted transfer rate.

The transfer rate of AEs depends on two factors. One factor
is the model-related parameters, including model architecture,
model capacity, and test accuracy. The transfer rate of AEs is
higher among models with similar architecture, lower model
capacity (the number of model parameters) and higher test
accuracy [28]. Another factor is the magnitude of adversarial
perturbation. Within a certain perturbation range, the transfer
rate of AEs is proportional to the magnitude of adversarial per-
turbation, i.e., the greater perturbation to the original example,
the higher transfer rate of the constructed AEs. The minimum
perturbation required for different methods of constructing
AEs is different.

4) Perturbation: Too small perturbations to the original
examples are difficult to construct AEs while too large pertur-
bations can be distinguished by human eyes easily. Therefore,
perturbations need to achieve a balance between constructing
AEs and human visual system. For example, the perturba-
tion is difficult to control for FGSM [18] which incurs the
effect of label leaking easily. To address these issues, an
optimized FGSM based on iterative method [22] can control
the perturbation within a threshold range, thus significantly
improves the success rate of constructing AEs. However, the
transfer rate of such AEs is low. Later, a saliency map-based
method [23] was proposed. The key step includes: 1) direction
sensitivity estimation: evaluate the sensitivity of each class for
each input feature; 2) perturbation selection: use the sensitivity
information to select a minimum perturbation δ among the
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input dimension which is most likely to misclassify the model.
In general, L2 distance norm is used to measure the pertur-

bation between the AE and the original example:

d(x
′
, x) = ||x

′

i − xi||2 =

√∑
i

(x
′
i − xi)2 (6)

where xi is an original example, x
′

i is an adversarial example,
d(x

′
, x) represent the distance metric between x and x

′
. It

shows that the larger d(x
′
, x) to the original example, the

greater perturbation needed to construct AEs successfully.
5) Perceptual adversarial similarity score (PASS): The AE

is not only misclassified by the models, but also visually
recognized as a correct class by humans. Wang et al. [29]
showed that the human visual system is sensitive to structural
changes, and proposed the structural similarity (SSIM) index
as a metric to measure the similarity between two images.
Luminance and contrast associated with the object structure
are defined as the structure information of the image.

The structure of the SSIM measurement system is shown
in Fig. 7. For two different aligned images X1 and X2, the
SSIM measurement system consists of three comparisons:
luminance, contrast, and structure. First, the luminance of each
image is compared; second, the standard deviation (the square
root of variance) is used as an estimate of the contrast of each
image; third, the image is normalized by its own standard
deviation as an estimate of the structure comparison; finally,
the three components are combined to produce an overall
similarity measure. Therefore, the perturbation of an image
can be modeled as:

SSIM(X,Y ) =
1

m

m∑
n=1

[L(xn, yn)αC(xn, yn)βS(xn, yn)γ ]

(7)
where m is the number of pixels; L, C, and S are the
luminance, contrast, and structure of the image, respectively;
hyper-parameters α, β and γ are used to weight the relative
importance of L, C, and S, respectively, the default setting is
α = β = γ = 1.

Based on SSIM measurement system, Rozsa et al. [31]
proposed the Perceptual Adversarial Similarity Score (PASS)
to quantify human perception of AEs. The PASS between x
and x

′
is defined as:

PASS(x
′
, x) = SSIM(ψ(x

′
, x), x) (8)

Original

image

Alternative  

model

Adversarial 

example

Construct
 Targeted 

model
Image 

classification

Fig. 8. Black-box attack. Alternative model: attackers know the model
architecture and parameters; targeted model: attackers do not know the model
architecture and parameters.

where ψ(x
′
, x) represents the homography transform (a map-

ping from one plane to another) from the original image
x to the adversarial image x

′
. PASS can quantify the AEs

by measuring the similarity of the original image and the
adversarial image. An appropriate PASS threshold can be set to
distinguish the AEs with excessive perturbation. Meanwhile,
attackers can also use the PASS threshold to optimize the
methods of constructing AEs. Therefore, constructing an AE
should satisfy:

argmin x
′

: f(x
′
) 6= y and PASS(x, x

′
)) ≥ θ (9)

where f(x
′
) 6= y represents that the AE is misclassified

by the model, θ is the PASS threshold set by the attacker,
PASS(x, x

′
)) ≥ θ represents that the AE is not recognized

by the human eyes.

D. Adversarial Abilities and Adversarial Goals

Adversarial ability is determined by how much attackers un-
derstand the model. Threat models in deep learning system are
classified into the following types according to the attacker’s
abilities.

White-box attack [31]: Attackers know the architecture
and the parameters of the machine learning model, and can
interact with the machine learning system in the process of
generating AEs attack. However, it is difficult for attackers
to obtain the architecture and the parameters of the model
in practical applications, hence it is relatively rare to launch
white-box attacks.

Grey-box attack [31]: Attackers know some model in-
formation such as architecture, learning rate, training data
and training steps, except model parameters. This attack is
a byproduct of black-box attack and is still not common in
practical applications.

Black-box attack [26]: Attackers do not know the archi-
tecture and parameters of the machine learning model, but can
interact with the machine learning system. For example, the
output can be classified by randomly test vectors. Attackers
utilize the transferability of AE to train an alternative model
to construct AEs first, and then use the generated AEs to attack
the unknown target model, as shown in Fig. 8.

In adversarial deep learning, the adversarial goal is to make
the model misclassifies the output. According to the different
influence of the perturbation on the classifier, we classify the
adversarial goals into four types:

(1) Confidence reduction: it is to reduce the confidence of
output classification.
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(2) Non-targeted misclassification: it is to alter the output
classification to any class which is different from the
original class.

(3) Targeted misclassification: it is to force the output
classification to be the attacker-specific target class.

(4) Source/Target misclassification: the attacker selects a
specific input to generate an attacker-specific target class.

As shown in Fig. 9, the vertical axis represents the adver-
sarial abilities which include architecture and training data,
architecture, training data, oracle (according to the relationship
of change between the inputs and the outputs provided by the
model to generate AEs), and examples (just know the inputs
and the outputs but cannot modify these inputs to observe the
difference in the outputs). The horizontal axis represents the
adversarial goals, and the increasing complexity from left to
right is confidence reduction, non-targeted misclassification,
targeted misclassification, and source/target misclassification.
In general, the weaker adversarial ability or the higher adver-
sarial goal, the more difficult the model to be attacked.

IV. METHODS OF CONSTRUCTING ADVERSARIAL
EXAMPLES

In recent years, DNNs have become one of most popular
research fields in the machine learning and have attracted
much attention in academia and industry. However, recent
studies show that DNNs are vulnerable to AEs which are
generated by adding small perturbation to the inputs. the neural
network model is misclassified while the human visual system
cannot perceive the perturbation. Based on this counterintuitive
phenomenon, how to construct AEs well has become a recent
research focus.

A. Mainstream Attack Methods

1) L-BFGS

Szegedy et al. [9] proposed L-BFGS (Large; Broy-den,
Fletcher, Goldforb, Shanno) to construct AEs. Given an image
x, attackers construct an image x

′
similar to x with L2 norm,

and x
′

can be labeled as different class. The optimization
problem is:

minimize ||x− x
′
||22 (10)

where ||x − x
′ ||22 is L2 norm. The attack goal is to make

f(x
′
) = l, x

′ ∈ [0, 1]n, where l is the target class. f(x
′
) = l

is the nonlinear and non-convex function which is difficult to
be solved directly. Therefore, the problem is solved approxi-
mately by the box-constrained L-BFGS.

minimize c · ||x− x
′
||22 + lossF,l(x

′
) (11)

where c is a randomly initialized hyper-parameter which is
determined by line search; lossF,l() is the loss function.
f(x

′
) = l is approximated by minimizing the loss function.

Although this method is stable and effective, the calculation
is complicated.

2) FGSM
Goodfellow et al. [18] proposed a simplest and fastest

method to construct AEs, named fast gradient sign method
(FGSM). The generated images are misclassified by adding
perturbation and linearizing the cost function in the gradient
direction. Given an original image X, the problem can be
solved with:

Xadv = X + εsign(∇xJ(X, ytrue)) (12)

where Xadv represents an adversarial example from X, ε
is a randomly initialized hyper-parameter, sign(∗) is a sign
function, ytrue is the real label corresponding to X, and J(∗)
is the cost function used to train the neural network, ∇X(∗)
represents the gradient of X. Both Fig. 3 and Fig. 4 use this
attack method to misclassify the images successfully.

There are two main differences between FGSM and L-
BFGS. First, FGSM is optimized with the L∞ norm. Secondly,
FGSM is a fast AE-construction method because it does not
require an iterative procedure to compute AEs, and hence
it has lower computation cost than other methods. However,
FGSM is prone to label leaking effect. Therefore, Kurakin et
al. [33] proposed FGSM-pred which uses the predicted label
ypred instead of true label ytrue. Researchers [22] also use the
gradients with L2 and L∞ norm, i.e., sign(∇xJ(X, ytrue)) is
changed to sign(∇xJ(X,ytrue))

||sign(∇xJ(X,ytrue))||2 and sign(∇xJ(X,ytrue))
||sign(∇xJ(X,ytrue))||∞ ,

these two methods are named as FGSM grad.L2 and FGSM
grad.L∞, respectively.

3) IGSM
It is difficult for FGSM to control the perturbation in con-

structing AEs. Goodfellow et al. [22] proposed an optimized
FGSM, named iterative gradient sign method (IGSM), which
applies perturbations to multiple smaller steps and clips the
results after each iteration to ensure that the perturbations are
within the neighborhood of the original image. For the N-th
iteration, the update process is:

Xadv
0 = X,Xadv

N+1 = ClipX,ε{Xadv
N +εsign(∇xJ(Xadv

N , ytrue))}
(13)

where ClipX,ε(∗) denotes [X − ε,X + ε].
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IGSM is non-linear in the gradient direction and requires
multiple iterations, but it is simpler than L-BFGS method in
calculation, and the success rate of AE construction is higher
than FGSM. IGSM can be further divided into two types:
1) reducing the confidence of the original prediction as the
original class; 2) increasing the confidence of the prediction
that originally belongs to the class with smallest probability.
The following Iter l.l method is the second case.

4) Iter l.l
FGSM and L-BFGS try to increase the probability of

predicting wrong results, but do not specify which wrong
class should be selected by the model. These methods are
sufficient for small datasets such as MNIST and CIFAR-10,
For ImageNet with a larger number of classes and the varying
degrees of significance between classes, FGSM and L-BFGS
may construct uninteresting misclassifications, such as mis-
classifying one type of cat into another cat. To generate more
meaningful AEs, a novel AE generation method is proposed
by perturbing the target class with the lowest probability so
that this least-likely class turns to become the correct class
after the perturbation, which is called as iterative least-likely
class method (iter l.l) [22]. To make the adversarial image
Xadv be classified as yLL, we have the following procedure:

Xadv
0 = X,Xadv

N+1 = ClipX,ε{Xadv
N −εsign(∇xJ(Xadv

N , yLL))}
(14)

where yLL represents the least likely (the lowest probability)
target class. For a classifier with good performance, the least
likely class is usually quite different from the correct class.
Therefore, this attack method can lead to some interesting
errors, such as misclassifying a cat as an aircraft. It is also
possible to use a random class as the target class. In this case,
this method is called as iteration random class method (iter
rnd).

5) JSMA
Papernot et al. [23] proposed Jacobian-based Saliency Map

Attack (JSMA), which is based on the L0 distance norm. The
basic idea is to construct a saliency map with the gradients, and
then model the gradients based on the impact of each pixel.
The gradients are directly proportional to the probability that
the image is classified as the target class, i.e., changing a larger
value will significantly increase the likelihood that the model
classifies the image as the target class. JSMA allows us to
select the most important pixel (the maximum gradient) based
on the saliency map and then perturb the pixel to increase
the likelihood of labeling the image as the target class. More
specifically, JSMA includes the following steps:
(1) Compute forward derivative ∇F (X).

∇F (X) =
dF (X)

dX
= [

dFj(X)

dXi
]
i∈1...M,j∈1...N

(15)

(2) Construct a saliency map S based on the forward deriva-
tive, as shown in Fig. 10.

(3) Modify the most important pixel based on the saliency
map, repeat this process until the output is the target class
or the maximum perturbation is got.

When the model is very sensitive to the change of the inputs,
compared to other attack methods, this method can calculate

Fig. 10. Saliency map S with the 28×28 image pixel, large absolute values
correspond to features with a significant impact on the output when perturbed
the input [23].

f(x)>0

f(x)<0

r*(x)

x0

Fig. 11. Adversarial examples for a linear binary classifier [34].

the minimum perturbation more easily to misclassify and make
the perturbed examples difficult to be perceived by human
eyes. Although JSMA is less efficient, it is subtler, and the
success rate and the transfer rate are relatively higher.

6) DeepFool
Mohsen et al. [34] proposed a non-targeted attack method

based on L2 distance norm, called DeepFool. Assuming that
the neural network is completely linear, there must be a
hyperplane separating one class from another. Based on this
assumption, we analyze the optimal solution to this problem
and construct AEs. The corresponding optimization problem
is as follows:

r∗(x0) = argmin||r||2 (16)

subject to sign(f(x0 + r)) 6= sign(f(x0)), where r indicates
the perturbation.

As shown in Fig. 11, x0 is the original example, f(x) is
a linear binary classifier, the straight line wx+b = 0 is the
decision boundary, and r∗(x) is the distance from the original
example to the decision boundary, i.e., the distance from x0
to the straight line wx+b = 0. The distance is equivalent to
the perturbation ∆(x0; f). Therefore, when ∆(x0; f) > r∗(x),
the AE can be generated.
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Compared with the L-BFGS, DeepFool is more efficient
and powerful. The basic idea is to find the decision boundary
that is the closest to x in the image space, and then use the
boundary to fool the classifier. It is very difficult to solve
this problem directly in neural networks with high dimension
and nonlinear space. Therefore, a linearized approximation is
used to iteratively solve this problem. The approximation is to
linearize the intermediate x0 classifier in each iteration, and
obtain an optimal update direction on the linearized model.
Then x0 is iteratively updated in this direction by a small
step α, repeating the linear update process until x0 crosses
the decision boundary. Finally, AEs can be constructed with
subtle perturbations.

7) Carlini Attack (C&W)
Carlini and Wagner [35] proposed a powerful attack method

based on L-BFGS. The attack with L0, L2, L∞ distance norm
can be targeted or non-targeted, and we take the non-targeted
L2 norm as an example here. The corresponding optimization
problem is:

minimizeδ ||δ||2 + c · f(x+ δ) (17)

where x+ δ ∈ [0, 1]n, c is a hyper-parameter that can balance
these two terms, and δ is a small perturbation. The definition
of the objective function f(x) is as follows:

f(x) = max(max{Z(x
′
)i : i 6= t)} − Z(x

′
)t,−l) (18)

where Z(x
′
) is the last hidden layer, t is the target label, and

l is a hyper-parameter, which is used to control the confidence
level of the model misclassification, and the AE x

′
can be

classified as t with high confidence by adjusting the value of
l. In general, high confidence attacks have large perturbations
and high transfer rates, and the Carlini Attack based on the
L0, L2, L∞ distance metric can defeat defensive distillation
successfully. There are three improvements to this attack based
on L-BFGS:

a) Use the gradient of the actual output in the model instead
of the gradient of softmax.

b) Apply different distance metrics (L0, L2, L∞).
c) Apply different objective functions f(x).
8) Ensemble Attack
Liu et al. [36] proposed an ensemble attack method combin-

ing multiple models to construct AEs. If an adversarial image
remains adversarial for multiple models, it is highly likely to
be transferred to other models. The basic idea is to give k
white-box models, an original image x and its true label y, the
outputs are J1, ..., Jk. The optimization problem based on the
combination method is as follows (targeted attack):

argminx′ − log((

k∑
i=1

αiJi(x
′
)) · 1y′ ) + λd(x, x

′
) (19)

where y
′

is the target label specified by the attacker,∑k
i=1 αiJi(x

′
) is the ensemble model, and αi is the weight

of the i-th model,
∑k
i=1 αi = 1, λ is a randomly initialized

parameter that is used to control the weight of the two terms.
The goal of the attack method is that the generated AEs are
still adversarial for the other black-box model Jk+1. Since the

decision boundaries for different models are almost the same,
the transferability of targeted AEs is improved significantly.

B. Other Attack Methods
From the perspective of attackers, the attack goal is to con-

struct strong AEs with small perturbations and fool the model
with high confidence while not being distinguished by human
eyes. Recently, in addition to typical AE constructing methods
introduced above, a lot of other attack methods have been
proposed. Dong et al. [37] proposed a momentum iterative
attack method. The basic idea is to add momentum based on
the previous IGSM. The weakness of previous iterative attacks
is that transferability (black-box attack) is weakened when the
number of iterations increases, which can be addressed after
adding momentum in iterative attacks. Momentum iterative
attack not only enhances the attack ability on the white-box
model, but also increases the success rate for black-box model.
Xia et al. [38] proposed AdvGAN to construct AEs. The basic
idea is to use generative adversarial networks to construct tar-
geted AEs, which not only learns and preserves the distribution
of the original examples, but also guarantees the diversity of
perturbations and enhances generalization ability significantly.
Tramr et al. [39] proposed an ensemble attack RAND+FGSM.
First, they added a small random perturbation RAND to escape
the non-smooth vicinity of the data point before computing
the gradients. Then, they applied the FGSM to enhance the
attack ability greatly. Compared with the FGSM, this method
has a higher success rate and can effectively avoid label
leaking. Su et al. [40] proposed an extreme one pixel attack
method which only changes one pixel for each image to
construct AEs. This method can attack a broader classes of
DNNs without having access to any adversarial information.
However, such simple perturbation can be recognized by the
human eyes. Weng et al. [41] proposed an computationally
feasible method called Cross Lipschitz Extreme Value for
nEtwork Robustness (CLEVER), which applies extreme value
theory to estimate a lower bound of the minimum adversarial
perturbation required to misclassify the image. CLEVER is
the first attack-independent method, and can evaluation the
intrinsic robustness of neural networks.

C. Comparison among Various Attack Methods
As discussed in Section IV, a large number of methods for

constructing AEs are proposed. However, these methods have
their own advantages and disadvantages. Based on the evalu-
ation indicators we discussed in Section III.C, we conducted
lots of experiments and then compared the transfer rate and
the success rate for different attack methods under different
perturbations.

1) Model Architecture: As shown in Fig. 12, we use the
dataset MNIST (50000 examples for the training set and 10000
examples for the test set) to train model A and model B, where
A is a 5-layers neural network model including 2 convolution
layers, 2 fully connected layers and 1 output layer; B is also
a 5-layers neural network model including 3 convolutional
layers, 1 fully connected layer, and 1 output layer. The reg-
ularization technique dropout is applied to prevent overfitting
during the training.
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TABLE I
THE SUCCESS RATE OF ADVERSARIAL EXAMPLES

Method
Perturbation 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L-BFGS [9] 21.4/7.9
5.4/45.6

56.9/32.7
30.4/81.3

78.4/54.3
64.9/89.5

84.2/64.6
82.7/93.1

86.9/70.3
88.5/95.6

88.3/76.1
91.2/96.7

89.4/78.0
92.1/96.9

92.8/84.6
92.3/98.2

94.2/86.4
93.2/95.1

92.4/84.6
91.9/94.5

FGSM [18] 16.7/7.7
5.0/36.8

49.0/29.2
28.7/77.9

69.7/48.8
62.3/87.3

79.0/60.1
78.1/90.8

81.9/67.3
84.4/92.6

82.3/72.2
86.5/93.3

81.6/75.7
85.7/93.6

80.3/77.0
84.1/93.3

79.2/77.4
82.8/92.5

78.4/77.2
81.4/91.3

IGSM [22] 26.5/9.2
5.8/58.1

89.6/47.4
38.8/96.4

99.7/78.2
80.7/99.6

100/91.5
96.5/99.9

100/96.6
99.3/100

100/98.5
99.8/100

100/99.4
99.9/100

100/99.6
99.9/100

100/99.8
100/100

100/99.9
100/100

JSMA [23] 22.7/8.4
6.0/52.5

58.4/34.8
32.7/86.2

85.9/61.2
68.8/91.4

88.6/67.1
84.3/94.2

90.2/72.3
88.7/96.4

91.1/78.4
92.8/97.5

92.6/80.3
92.9/97.8

94.3/87.2
93.1/98.3

95.7/88.3
94.8/96.5

94.3/86.7
93.2/95.4

DeepFool [34] 23.6/8.3
7.6/48.8

57.8/33.2
30.9/84.1

80.6/56.4
66.5/91.2

85.3/65.6
80.1/92.9

88.4/69.7
86.5/94.1

90.2/77.6
91.4/95.8

90.6/78.5
92.2/96.0

91.5/86.4
93.1/97.7

94.8/87.2
93.8/95.7

94.4/86.3
92.5/95.1

Carlini Attack [35] 26.5/7.4
8.6/58.0

98.0/42.0
45.0/99.0

100/69.0
86.0/100

100/85.0
95.0/100

100/92.0
98.0/100

100/94.0
99.0/100

100/98.0
100/100

100/98.0
100/100

100/100
100/100

100/100
100/100

Ensemble Attack [36] 8.2/4.5
2.7/18.4

48.8/29.6
23.2/77.7

71.8/55.6
64.3/89.0

81.1/69.0
81.9/91.5

85.6/75.6
87.1/92.5

87.4/80.1
88.4/92.8

87.5/82.7
87.9/93.1

87.4/84.0
85.9/92.8

86.5/84.1
83.4/91.8

85.3/83.9
81.1/90.5

TABLE II
THE SUCCESS RATE OF ADVERSARIAL EXAMPLES

Method
Perturbation 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L-BFGS [9] 35% 48% 65% 72% 80% 81% 82% 80% 80% 80%

FGSM [18] 32% 38% 42% 48% 59% 63% 45% 31% 15% 12%

IGSM [22] 30% 70% 78% 85% 88% 92% 92% 91% 90% 90%

JSMA [23] 45% 68% 75% 88% 94% 95% 98% 98% 96% 96%

DeepFool [34] 42% 45% 65% 72% 89% 89% 89% 88% 87% 88%

Carlini Attack [35] 72% 90% 96% 98% 98% 99% 99% 98% 99% 98%

Ensemble Attack [36] 56% 74% 85% 88% 92% 92% 95% 94% 94% 96%

A B

Conv(64,5,5)+Relu 
Conv(64,5,5)+Relu 

Dropout(0.25) 
FC(128)+Relu 
Dropout(0.5)

FC

Dropout(0.2) 
Conv(64,8,8)+Relu 
Conv(126,6,6)+Relu 
Conv(128,5,5)+Relu 

Dropout(0.5)

FC

Softmax

MNIST

Fig. 12. Model architectures used for the MNIST dataset. Conv: convolutional
layer, FC: fully connected layer.

2) The Transfer Rate of Adversarial Examples: As shown
in Table I, we apply the attack methods in Section IV.A to
compare the transfer rate of AEs on the models A and B in
Fig. 12. Each of the four numbers in the table represents the
transfer rate of A→A, A→B, B→A, B→B. Under the specific
attack method, the magnitude of the perturbation is propor-
tional to the transfer rate, i.e., the greater the perturbation, the

higher the transfer rate. Under the certain perturbation, the
Carlini Attack has the highest transfer rate. Under the certain
perturbation and the specific attack method, the transfer rate is
higher between similar or identical models. For example, the
transfer rate of A→A is higher than the transfer rate of A→B;
the transfer rate between two models is asymmetric, such as
the transfer rate of B→A and the transfer rate of A→B are
different.

3) The Success Rate of Adversarial Examples: As shown
in Table II, we apply the attack methods in Section IV.A to
compare the success rate of AEs on the model A in Fig.
12. Under the specific attack method, the magnitude of the
perturbation is proportional to the success rate, i.e., within
a certain perturbation range, the greater the perturbation,
the higher the success rate. Under the certain perturbation,
the optimal perturbations are diversity for different attack
methods. Among them, the Carlini Attack has the highest
success rate in constructing AEs.

V. DEFENSES AGAINST ADVERSARIAL EXAMPLES

AEs bring a great threat to the security-critical AI appli-
cations such as face payment and autonomous vehicles based
on image recognition in deep learning. Vulnerability to AEs
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is not unique to deep learning, all machine learning models
are vulnerable to AEs. Therefore, defending against AEs is
urgent for machine learning security. In this section, we will
briefly describe the basic goals of defending against AEs first,
then detail the current defense techniques and their limitations,
and present some suggestions for future research work on the
problems of the current defense techniques finally.

A. Defense Goals

Generally, there are four defense goals:
1) Low impact on the model architecture: when construct-

ing any form of defenses against AEs, the primary consid-
eration for researchers is making a minimal modification
to model architectures.

2) Maintain model speed: running time is very important
for the availability of DNNs. It should not be affected
during testing. With the deployment of defenses, DNNs
should still maintain high performance on large datasets.

3) Maintain accuracy: defenses should have as little impact
as possible on the classification accuracy of models.

4) Defense should be targeted: defense should work at
points where AEs are relatively close to the training set.
Because the examples that are very far from the dataset
are relatively secure, perturbations to these examples are
easily detected by the classifier.

B. Current Defenses

1) Adversarial Training
AEs have been used to improve anti-interference ability

for AI models. In 2015, Goodfellow et al. [18] proposed
the adversarial training to improve the robustness of the
model. The basic idea is to add AEs to the training data and
continuously generate new AEs at each step of the training
so that the robustness of the model defense against the AEs
is enhanced. The number and relative weight of AEs in each
batch are controlled by the loss function independently. The
corresponding loss function is as follows:

LOSS =
1

(m− k) + λk
(

∑
i∈CLEAN

L(Xi|yi)+

λ
∑

i∈ADV
L(Xadv

i |yi))
(20)

where L(X|y) is a loss function of the example X with a real
label y, m is the total number of training examples, k is the
number of AEs, and λ is a hyper-parameter used to control
the relative weight of the AEs in the loss function. When k
= 0.5m, i.e., when the number of AEs is the same as the
number of original examples, the model has the best effect in
the adversarial training.

Adversarial training is not the same as data augmentation.
The data is augmented by amplifying the data and the aug-
mented data may appear in the test set. However, AEs are
usually not shown in the test set but can reveal the defects
of the model. Adversarial training can be viewed as the
process of minimizing classification error rates when the data

is maliciously perturbed. In the following two situations, we
suggested to use adversarial training:

i) Overfitting: when a model is overfitting, a regularization
term is needed.

ii) Security: when AEs refer to security problems, adversar-
ial training is the most secure method among all known
defenses with only a small loss of accuracy.

Although the model is very robust to white-box attacks
after adversarial training, it is still very vulnerable to the AEs
generated from other models, i.e., the model is not robust to
black-box attacks. Based on this attribute, Tramr et al. [39]
proposed the concept of ensemble adversarial training. The
main idea is to augment the training data which constructed
not only from the model being trained, but also from the
other pre-trained models. The benefit is that it can increase
the diversity of AEs and improve the generalization ability
significantly. Compared to standard adversarial training, the
model is weak in defending against white-box attack in the
ensemble adversarial training, but the defensive ability of the
model is enhanced significantly in the black-box attack.

AEs also offer the possibility to implement semi-supervised
learning. The model assigns label y

′
to point x which are not

related to label in the dataset. When the model performs well,
y

′
has large possibility of being a true label. Then the attacker

constructs an AE x′ that causes the classifier to output a label
y

′′
, and y

′ 6= y
′′

. The goal is to assign x and x′ the same label.
These AEs that do not use real label and generated by a trained
model to provide label are called virtual adversarial examples.
Based on the concept of virtual adversarial examples, Miyato
et al. [42] proposed a method that adding virtual adversarial
examples to the dataset for training, we refer to this method
as virtual adversarial training. The virtual adversarial loss
function is as follows:

LOSS = KL[p(·|x; θ̂)||p(·|x+ rv−adv; θ̂)] (21)

where KL[p||q] represents the KL divergence between the
distributions p and q, rv−adv represents the adversarial pertur-
bation. The adversarial loss function defined in the adversarial
training needs the real label y, but the virtual adversarial loss
function only needs the input x and does not need the real label
y, which enables the researcher to apply virtual adversarial
training in semi-supervised learning successfully. The goal
of virtual adversarial training is to give the possibly same
predicted value before and after adding the perturbation, which
makes semi-supervised learning can use unlabeled examples
to achieve significant effect in text classification and machine
translation [43].

2) Defensive Distillation
Adversarial training needs AEs to train the model, so

the defense is specific to the process of AEs construction.
The defensive capability is divergent for different attack
methods. To solve this problem, in 2016, Papernot et al.
[26] proposed a method to improve the robustness for any
neural networks, which is called as defensive distillation. The
distillation method originally uses a small model to simulate
a large and computationally intensive model, which does not
affect the accuracy and can solve the problem of information
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Fig. 13. The pipeline of defensive distillation. The initial network is trained
at temperature T on the training set (X,Y(X)), the distilled network is trained
at the same temperature T on the new training set (X,F(X)) [26].

missing. Different from the traditional distillation technique,
defensive distillation aims to smooth the model during the
training process by generalizing examples outside the training
data. Specifically, one model is trained in a normal way first,
and another compression model is trained with the probability
vector learned from the first model. The robustness of the
second distilled model is significantly enhanced. The specific
training steps are shown in Fig. 13.

i) The probability vectors produced by the first DNN are
used to label the dataset. These new labels are called soft
labels as opposed to hard class labels.

ii) The newly labelled dataset is used to train the second
DNN model. The second model can also be trained by
using a combination of the hard and soft labels. Since
the second model combines the knowledge of the first
model, the size of the second model is smaller in scale,
less computationally expensive and more robust than the
first model.

The basic idea of defensive distillation is to generate
smooth classifiers that are more resilient to AEs, reducing
the sensitivity of the DNN to input perturbation. In addition,
it improves the generalization ability because there is no
need to modify the neural network architecture, therefore, it
has low training overhead and no testing overhead. Although
Carlini and Wagner [44], [35] proposed an attack method to
demonstrate that the defensive distillation does not improve
the robustness of neural networks significantly, but it is still a
good research direction to defense AEs in the following three
ways :

(i) Consider defensive distillation under different types of
perturbation (FGSM, L-BFGS, etc.);

(ii) Investigate the effect of distillation on other DNN models
and AE constructing algorithms;

(iii) Study various distance metrics such as L0, L2, L∞ be-
tween the original examples and the AEs.

3) Detection
Adversarial training is proposed to enhance the robustness

of the model. However, this method lacks generalization ability
and is pdifficult to popularize. Defensive distillation was
proposed to defend AEs but is then defeated by a strong Carlini
Attack scheme. In 2017, Lu et al. [45] proposed an RBF-
SVM based detector to detect whether the input is normal or
adversarial (as shown in Fig. 14). The detector can get the
internal state of some back layers in the original classification

Fig. 14. SafeNet architecture. SafetyNet consists of a conventional classifier
with an RBF-SVM that uses discrete codes to detect adversarial examples [45].

neural network. If the detector finds out that the example is
adversarial example, then it will be rejected.

We assume that the detector is difficult to attack, and the
output of ReLU activation function is processed in the binary
format. Since normal examples and AEs generate different
binary codes, detectors can compare the code during the test
to determine whether the input is normal or adversarial.

At present, AE detectors are mainly divided into the fol-
lowing classes [46]:

Detection Based on Secondary Classification: Generally,
there are two kinds of secondary classification detection meth-
ods. The first one is adversarial training detector [47], [48],
which is similar to adversarial training. The main idea is to
add a new classification label to AEs during training. If an
adversarial example is detected, the model will classify it into
the new class. The second one is to take the characteristics
extracted from AEs and original examples during the convo-
lution layer as input. Then the labeled input data is used to
train neural network detectors. This method performed well
on detecting over 85% of AEs.

Detection Based on Principal Component Analysis
(PCA): The essence of PCA is to transform the original
features linearly and maps them to a low-dimensional space
with the best possible representation of the original features.
PCA-based detection methods are mainly divided into two
types. The first one uses PCA in the input layer [49], because
AEs have a greater weight processed by PCA than original
examples. The second one uses PCA in the hidden layer
[50]. If the result of each hidden layer matches the feature
of original examples, the detector will classify the input as
original examples.

Detection Based on Distribution: There are two main
distribution-based detection methods. The first kind of
distribution-based detectors uses the maximum mean discrep-
ancy (MMD) [47]. Assuming there are two sets of images
S1 and S2, S1 contains all the original examples, S2 con-
tains either all AEs or all original examples. If S1 and S2

have the same distribution, then S2 has original examples;
otherwise, S2 is full of AEs. The second one uses Kernel
Density Estimation [51]. Since AEs have a different density
distribution from the original examples, they can be detected
with high confidence by the estimation of the density ratio. If
the density ratio of one example is close to 1, it belongs to
original example, while the density ratio is much larger than
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1, it belongs to AEs.
Other Detection Methods: Dropout randomization [21]

is a method to use dropout randomly during AE detection.
Original examples always generate correct labels, but AEs are
of high possibility to be different from the label corresponding
to original examples. In addition, another method called Mean
Blur [50] uses the filter to perform mean blurring on the input
image. This method is simple and can effectively improve the
robustness of models.

C. Other Defense Techniques

From the perspective of defenders, our goal is to train a
model where no AEs exist in this model or AEs cannot be
easily generated. Some novel researches on defending AEs
have been proposed. Meng et al. [31] proposed a framework
MagNet, including one or more separate detector networks and
a reformer network. The detector network learns to distinguish
normal examples from AEs by approximating the manifold of
normal examples. The reformer network moves AEs towards
the manifold of normal examples. As MagNet is independent
of any AEs construction process, it is therefore effective in
the black-box and gray-box attacks. Dong et al. [52] proposed
a high-level representation guided denoiser (HGD) method.
Even though the success rate is a bit lower through using HGD,
fewer training images and less training time is consumed than
previous defense methods. Ma et al. [53] proposed Local
Intrinsic Dimensionality (LID) to describe the dimensional
attributes of the adversarial subspace in the AEs, and it is
proved that these features can distinguish normal examples
from AEs effectively. The analysis of the LID characteristics
of the adversarial area provides not only a new direction for de-
fenses, but also more challenges for potential attacks. Baluja et
al. [54] proposed adversarial transformation networks (ATNs)
to increase the diversity of perturbations. ATNs improve the
effectiveness of adversarial training based on specific AEs.
However, ATNs may produce similar perturbations when using
iterative methods. Note that iterative methods are not currently
suitable for adversarial training.

D. Limitations of Defenses

As discussed above, a lot of defenses have been proposed.
In what follows, we summarize their advantages and disad-
vantages.

As shown in Table III, adversarial training is simple and
can significantly improve the robustness of models. However,
AEs are required in the training process, which brings high
overhead. Besides, it is difficult to theoretically explain which
attack method to construct AEs for adversarial training can
achieve the best robustness of models. Defensive distillation
can greatly reduce the sensitivity to perturbation without mod-
ifying the neural network architectures. Therefore, defensive
distillation incurs low overhead in training and testing. How-
ever, defensive distillation needs to add distillation tempera-
ture and modify the objective function, which increases the
complexity of designing defensive models. Besides, attackers
can easily bypass the defensive distillation following the three

strategies: 1) choose a more suitable objective function; 2) cal-
culate the final layer of gradient instead of the second-to-last
layer of gradient; 3) attack a fragile model and then transfer
to the distillation model. Detectors do not need to modify the
model architecture and parameters; hence the complexity is
low. However, its performance is highly correlated with the
type of detector. In addition, this method only detects the
existence of AEs and does not improve the robustness of the
model.

VI. FUTURE WORK

AE construction and defense are one of the research
hotspots in the AI security field. Although many AE con-
struction methods and defense techniques have been proposed,
various unresolved problems still exist. This section summa-
rizes the problems to this field and put forward to some future
research directions.

In term of AE construction, there are three major problems:
1) It is difficult to build a generalized AE-construction

method. In recent years, a lot of AE-construction meth-
ods have been proposed such as the gradient-based FGSM,
JSMA, the classifier decision boundary-based DeepFool and
the ensemble attack method combining multiple models. These
methods can achieve good performance in some evaluation
metrics, but they are difficult to construct a generalized AE.
Therefore, defenders can propose the efficient defenses against
these specific attacks. For example, the gradient can be hid-
den or obfuscated to prevent against the gradient-based AE-
construction methods; the objective function can be modified
to smooth decision boundaries to prevent against on the
classifier decision boundaries-based AE-construction methods.

2) It is difficult to control the magnitude of perturba-
tion for target images. In the mainstream attack methods,
attackers construct AEs by perturbing target images to fool
neural network models. However, it is difficult to control the
magnitude of perturbation because too small perturbation can
not generate AEs and too large perturbation can be perceived
by human eyes easily.

3) AEs are difficult to maintain adversarial stability
in real-world applications. The image perturbed at specific
distances and angles may led to the model misclassification,
but a lot of images are perturbed at different distances and an-
gles failed to fool the classifier [55]. Moreover, AEs may lost
its adversarial with physical transformation such as blurring,
rotation, scaling and illumination [56]. Actually, it is hardly
for AEs to maintain stability in the real-world applications.

Therefore, to address these issues, we propose to improve
AE quality in the following three directions.

1) Construct AEs with a high transfer rate. With the
diversification of neural network models, the effectiveness of
attacksp for one single model is not enough. Based on the
transferability, constructing AEs with high transfer rate is a
prerequisite to evaluate the effectiveness of black-box attacks
and a key metric to evaluate generalized attacks.

2) Construct AEs without perturbing the target image.
When constructing AEs, the magnitude of perturbation to the
target image is determined by experiments and the optimal
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TABLE III
THE ADVANTAGES AND DISADVANTAGES OF DEFENSES

Defenses Advantages Disadvantages

Adversarial training [18] Simple operation,
good defense effect

Training is difficult to converge,
high overhead

Defensive distillation [26] Low overhead,
well generalization

Only suitable for energy probability distribution,
model-dependent,
high complexity

Detector [45] Low complexity,
model-independent

Weak generalization,
detector-dependent,

not improve the robustness

perturbation will be different in various models. It increases
the complexity of attacks and affects the success rate and the
transfer rate. Therefore, Constructing AEs without perturbing
the target image is a new and challenging research direction.

3) Model the physical transformation. In the physicalp
world, attackers need to consider not only the magnitude of
the perturbations but also the physical transformations such as
translation, rotation, brightness, and contrast. However, it is
difficult for attackers to use traditional algorithms to generate
real-world AEs with high adversarial stability. Therefore, it is
an efficient way to model physical perturbations to improve
the adversarial stability of the constructed real-world AEs.

In terms of defending against AEs, there are two main issues
at present.

1) Defense is highly related to model architectures
and parameters. The black-box attack does not need to
obtain model architecture and parameters to construct AEs.
Therefore, it is difficult for defenders to resist the black-box
attack by modifying the model architectures or parameters.
For example, defensive distillation needs to modify and retrain
the target classifier, which was defeat by a strong Carlini
Attack method. The defensive effect of detector is related to
the existence of AEs, which was broken by constructing new
loss functions.

2) Weak generalization for defense models. Adversarial
training and detector are representative defense techniques.
Adversarial training can improve the robustness of the model
by adding AEs to training dataset. Detector can detect exam-
ples based on AEs in the dataset. However, the robustness is
different when defending the AEs generated by different attack
methods, i.e., the generalization ability of defense models is
weak.

VII. CONCLUSION

Deep neural networks (DNNs) have recently been achieving
state-of-the-art performance on a variety of pattern-recognition
tasks. However, recent researches show that DNNs, like many
other machine learning models, are vulnerable to AEs. Al-
though many AE construction and defense methods have been
proposed, there are still some challenges to be solved. The
state-of-the-art research is still in the adversarial development
stage of “while the priest climbs a post, the devil climbs ten”.
In this survey, we summarize the state-of-the-art AE construc-
tion methods and the corresponding defense techniques, and

then discuss several future research directions and challenges
along with the future trends in this field. Although AEs have
caused researchers to question deep learning, it also prompts
both academia and industry to better understand the difference
between AI and our human brain.
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