>Scientists discover a promising way to create new superheavy elements
The heaviest abundant element known to exist is uranium, with 92 protons (the atomic number "Z"). But scientists have succeeded in synthesizing superheavy elements up to oganesson, with a Z of 118. Immediately before it are livermorium, with 116 protons and tennessine, which has 117.
All have short half-lives—the amount of time for half of an assembly of the element's atoms to decay—usually less than a second and some as short as a microsecond. Creating and detecting such elements is not easy and requires powerful particle accelerators and elaborate measurements.
While there have been several techniques to discover superheavy elements and create their isotopes, one of the most fruitful has been to bombard targets from the actinide series of elements with a beam of calcium atoms, specifically an isotope of calcium, 48-calcium (48Ca), that has 20 protons and 28 (48 minus 20) neutrons. The actinide elements have proton numbers from 89 to 103, and 48Ca is special because it has a "magic number" of both protons and neutrons, meaning their numbers completely fill the available energy shells in the nucleus.